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SECTION 1
INTRODUCTION

This report discusses structural analyses performed in
support of a study aimed at eliminating B-1B windshield problems
which surfaced when the aircraft became operational. Optics and
durability were immediately degraded by delamination. The many
edge attachments made windshield changeout difficult and time-
consuming. thereby affecting supportability. The overall
objective of this study was to evaluate the impact of design
configuration changes proposed to alleviate the in-service
problems on the structural performance of the windshield system
when subjected to birdstrike or internal cabin pressurization.

The study was conducted in two phases. The objective of
Phase 1 was to establish the structural performance of the
current production B-1B windshield system when subjected to
internal pressure loading or birdstrike by a four pound bird
impacting at either of two locations at 650 mi/hr. Birdstrike
results were compared to birdstrike test results of the B-1A
windshield system (no birdstrike tests of the B-1B system had
been performed). In addition, the analytical results were
reviewed to determine the more critical of the two bird impact
locations (the near-center location, denoting the approximate
windshield panel centroid location, or the upper corner location
near the connection between the centerpost and the eyebrow
frame). The Phase 1 results served as a baseline for the Phase 2
effort. The objectives of Phase 2 were to determine the
structural performance of alternate configuration windshields
subjected to the internal pressure loading or birdstrike at the
critical location determined in Phase 1, and to compare the
results with those of the baseline windshield systenm.

In evaluating the structural performance of the various
windshield configurations, several items were deemed important.




First, deflections and stresses in the windshield panel
(particularly in the structural polycarbonate plies) were
important since the primary birdstrike protection is provided by
this component. Second, the stresses in the frame members
supporting the windshield were important, especially since
fracture of a large portion of the eyebrow frame had occurred
during testing of the B-1A windshield system.1 Third, stresses
in the fasteners joining the windshield to the immediate support
structure were of importance since the fasteners must provide
load transfer from the windshield to the frames and maintain the
windshield pressure seal. Of special interest was checking the
structural feasibility of removing every other fastener and of
increasing the associated hole tolerances, both of which would
significantly reduce windshield change-out time.

The study was performed using the MAGNA nonlinear finite
element analysis program2 as the major analysis tool. Additional
computer programs were written or modified from existing ones to
aid in analyzing the windshield fasteners. Owing to the large
finite element model sizes, the ASD CRAY X-MP located at Wright-
Patterson Air Force Base, Ohio was used for all MAGNA analyses.
Preprocessing (model development), post-processing (data
reduction), and fastener analysis were performed using the ASD
CDC Cyber computers located at WPAFB and the UDRI Research VAX
located at the University of Dayton in Dayton, Ohio.




SECTION 2
MODELING

Figure 2.1 is a schematic representation of the B-1B
windshield system, showing the large left and right windshield
panels, the aft windows, and the immediate support structure.
Figure 2.2 depicts the cross sections of the various windshield
panel configurations that were analyzed. The baseline windshield
consisted of an outer thermally tempered glass ply, a single
thick structural polycarbonate ply, and an inner spall
polycarbonate ply, bonded together by silicone interlayers. The
trade study alternate configuration windshield concepts included
substituting acrylic for the glass outer ply, substituting
urethane for silicone, substituting a coating for the inner spall
polycarbonate ply, and splitting the single structural
polycarbonate ply into two polycarbonate plies bonded together by
a 0.060 inch layer of silicone. The use of silicone rather than
urethane for this additional interlayer provided conservative
results since the low modulus of the silicone leads to greater
flexing, and therefore higher stresses, of the structural plies
during bird impact.

‘

2.1 Procedure

Because the bird impact locations were not along the
windshield centerline (that is, along the centerpost -- see
Section 2.5), no symmetry existed, therefore requiring both sides
of the windshield to be modeled. A single windshield panel
finite element grid was used for bird impact analyses of both
impact sites and for the internal pressure analyses.

A coarse grid model of the left side windshield was
first created using the MAGNA preprocessor module IJKGEN3 and
user subroutines CRDTRN, SURFAC, and UINPUT written by Robert E.

McCarty of AFWAL/FIER.4 The subroutines were originally written
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to generate B-1A windshield geometry. UDRI modified the
subroutines as needed to produce the correct B-1B geometry. The
resulting model is shown in Figure 2.3.

The coarse windshield model was subsequently
reflected to produce a coarse model of the right side windshield.
The coarse models were merged and refined using the PREP module>
of the MAGNA preprocessor to produce the desired mesh of
windshield finite elements. A coarse model of the left-side aft
window was then created manually and subsequently refined and
merged into the windshield model using PREP.

The support structure models were developed next.
The centerpost and eyebrow frames in the vicinity of the bird
impact sites were modeled with solid elements to give better
stress results than simpler beam elements would. Both models were
developed manually. Model cross sections are shown in Figure
2.4. The remaining frame elements (forward and aft centerposts,
aft arch, right side eyebrow frame, and side window frame) were
defined manually as beam elements and merged into the
windshield. '

At this point the basic model geometry (nodes,
coordinates, and connectivity) was complete. The nodal bandwidth
was then reduced by executing the RENUMBER option in PREP and
then running the model through a stand-alone code that was
modified for MAGNA by UDRI from a wavefront minimization code

> The bandwidth reductions were

developed by Hoit and Wilson.
performed to provide more efficient storage of the model, thus

speeding execution of MAGNA.

To complete the model, material properties, boundary
conditions, linear constraints, and run control data were added.
Figure 2.5 shows the completed geometry used for the baseline and
all but one of the trade studies. The geometry for the split
polycarbonate structural ply trade study is shown in Figure 2.6.




Figure 2.3. Coarse Model of the Left Side B-1B Windsheld Panel.
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2.2 Elenments

Table 2.1 summarizes the elements used in the model.
Element choices were governed by the output data required from
each portion of the model. Good deflection data were required
everywhere, while accurate stresses were needed only in the
vicinity of the impact sites. Because the model was expected to
be large and therefore expensive to run, economy of type and
number of elements was also deemed important.

In keeping with these guidelines, the left side
windshield and centerpost and eyebrow frames in the vicinity of
the impact site were modeled with solid elements (MAGNA Types
6, 7, and 8) to obtain accurate stresses. One layer of solid
elements was used for each layer of the left side windshield.

The use of solid elements for frame members provided for accurate
modeling of local effects such as flange bending. Fourteen-point
integration was used for the solid elements to compute accurate
stresses more economically than would be possible with full
twenty-seven-point (3 x 3 x 3) integration.

For the right side windshield and side window, which
are located away from the impact site, the laminated shell (Type
11) element was used. Only one layer of Type 11 elements was
required to model all of the multiple windshield and window
layers, thus leading to reduced model size and computation time.
As discussed in Section 2.3, the material properties for this
element had to be shear corrected to provide the correct
stiffnesses (and therefore deflections). Eight-point integration
(2 x 2 x 2) was used.

Finally, for the frame elements located away from the
impact site, three-node curved beam elements (MAGNA Type 12) were
used. This element provided good overall bending and twisting
results, but did not model local effects like flange bending (a
basic beam element assumption is that the cross section remains

11




Structural
Component

Left Side
Windshield

Right Side
Windshield

Aft Window
Centerpost
Near Impact

Eyebrow Frame
Near Impact

Frames Away
from Impact

*Numbers in parentheses are for the split

TABLE 2.1
WINDSHIELD SYSTEM FINITE ELEMENTS

MAGNA
Element Integration
Type Quantity Scheme
8 350 14 point
(490) *
11 31 2x2x2
(31)
11 15 2xX2x2
(15)
6,7,8 164 14 point
(164)
7,8 75 14 point
(75)
12 46 3 point
(46)
polycarbonate

structural ply configuration (Case 9).

12




rigid, precluding flanges from moving independently of the rest

of the cross section).

The resulting baseline model (also used for all but
one of the trade studies) was quite large, having 589 solid
elements, 46 laminated shell elements, and 46 beam elements. The
model for the split polycarbonate ply trade study was even
larger, containing 729 solid elements. The models were
approximately three times larger than the largest models
successfully analyzed on the ASD Cyber 845 computer,4 therefore
requiring the use of the ASD CRAY X-MP computer for execution.

2.3 Material Properties

Table 2.2 summarizes the elastic material properties
used in the various models. 1Isotropic properties were input for
all solid and beam elements (Types 6, 7, 8, and 12), except for
the interlayer elements. The tensile modulus, shear modulus, and
Poisson’s ratio were independent of each other for the interlayer
materials. Therefore these properties were input in orthotropic

format since this format allows for their independent entry.

Due to the assumption of perfect shear coupling
between layers, the response of the Type 11 element is generally
too stiff (deflections too small) when the tensile moduli vary
considerably between adjacent layers. The layer-to-layer
variation was large for the B-1B windshield, with the glass
modulus being 3450 times larger than the silicone modulus. The
tensile modulus, shear modulus, and Poisson’s ratio were
therefore multiplied by shear correction factors computed in
accordance with Reference 6 using a program written by Dr. R. A.
Brockman of UDRI. The resulting element stiffnesses were
correct, therefore leading to accurate deflections. 1In the
current version of MAGNA, however, stresses are not recovered
properly for shear corrected elements, making the Type 11 element
inappropriate for accurate stress analysis (such as was desired
for the left side windshield). Table 2.3 summarizes the

13
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correction factors and revised material properties used for the
Type 11 elements. Note that all other Type 11 properties
remained as listed in Table 2.2.

To simulate the removal of the spall polycarbonate
ply, the inner ply of the Case 7 model was assigned a low tensile
modulus value (1000 psi) to ensure that its stiffness would be
negligible. 1In addition, it was assigned a low density value
(4.29 x 1072
would be small.

1b/in3) to ensure that its inertia contributions

In addition to elastic material properties, it was
important that the plastic stress-strain behavior be input for
those materials for which yielding was a possibility. Table 2.4
gives the stress (Second Piola-Kirchoff)-versus-plastic strain
(Green-St. Venant) curve values that were input into the MAGNA
models.

Note that no plasticity was included for the
interlayer materials. These materials were considered to be only
load transfer mediums since material modeling of such
viscoelastic materials is imprecise (due to the lack of accurate
material properties and the inability of MAGNA to adequately
model the bulk behavior of such materials). Thus the interlayers
were modeled as elastic materials up to an arbitrarily high yield
stress (chosen to ensure that yielding would not occur during the
analyses).

Acrylic was modeled as an elastic-perfectly plastic
material. 1In reality, acrylic is brittle compared to
polycarbonate, and fractures with little plastic deformation.
However, MAGNA cannot "turn off" an element once it reaches its
ultimate strength, nor can the stress-versus-plastic strain curve
be made to slope negatively (strain softening) down to a zero
stress state, since numerical instabilities would result during
analysis. The best recourse, then, was to use perfect plasticity
in the post-yield range. The effect of this modeling decision
was to enhance the stiffness and energy-absorbing ability of the
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TABLE 2.4
POST-YIELD STRESS-STRAIN CURVES

Total Strain® Plastic Strain Stressb
Material pin/in pin/in kpsi *

2024-T62 4728. 0. 49.8
Aluminum 5214. 290. 52.2 *

5616. 550. 53.7

6018. 860. 54.7

7025. 1760. 55.8

8032. 2680. 56.7

9041. 3620. 57.5

10050. 4520. 58.2

105000. 99510. 58.7

7075-T73 5616. 0. 55.7

Aluminum 5817. 60. 57.6

6018. 120. 59.0

6219. 230. 59.9

6622. 530. 61.0

7025. 850. 61.7

8032. 1700. 63.3

9041. 2630. 64.1

10050. 3560. 64.9

116050. 109560. 64.9

Polycarbonate 35150. 0. 12.0

644368. 605700. 13.7

Acrylic 22222. 0. 10.0

10022222. 10000000. 10.0

@ Green-st. Venant Strain

Second Piola-Kirchoff Stress “
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model acrylic compared to actual acrylic. The improvement did
not adversely affect the accuracy of the analytical results
because the thick polycarbonate structural ply (plies) still
provided the largest influence on the windshield behavior, and
because the soft, thick interlayer immediately below the acrylic
ply tended to uncouple the acrylic ply response from the
remainder of the windshield model.

Initially the glass outer ply was modeled like the
acrylic outer ply, namely, elastic-perfectly plastic. 1In
studying the results of an initial near-center birdstrike
analysis, it was apparent that this technique did not best
represent the glass ply behavior and adversely affected the
analytical results. The maximum deflection obtained from the
birdstrike run was less than 1 inch, less than half the
deflection that was recorded during birdstrike testing of the B-
1A.7 In addition, the region of glass that had reached the
ultimate strength was relatively small, being limited to the
vicinity of the impact point. 1In birdstrike testing of glass-
faced windshields, such as the B-1A simulated windshield test
articles,8 the entire glass ply shatters into very small pieces
almost instantaneously on impact by the bird. Thus the stiffness
contribution of the B-1B glass ply was assumed to be negligible
during the impact event. The failure model used by MAGNA is only
appropriate for materials which fail in ductile fashion, and thus
cannot model shattering of glass. In effect, then, the initial
B-1B model was performing as though the outer ply was a sheet of
aluminum (moduli for glass and aluminum are nearly identical, and

sheet aluminum would deform plastically under similar loading).

Since the stiffening effect of the glass ply was
small after shattering, and since the shattering failure mode
could not be correctly modeled, the left side glass ply was
assigned a low modulus (1000 psi) for the birdstrike analyses.
The glass remained bonded to the windshield after shattering, so
that its mass influenced the dynamic response of the windshield.

19




Therefore the correct density for glass was assigned to the outer
ply of the models. The glass ply modulus for the Type 11
elements was not changed because it was not expected to fail
since it was located away from the impact location. 1In addition,
the left-side glass ply was assigned the full tensile modulus for
the natural frequency and pressure analyses, since glass ply
failure was not expected.

For the windshield edge elements shown in Figure 2.7,
all layers were assigned the tensile modulus of polycarbonate and
an arbitrarily high yield strength to prevent yielding from
occurring. These properties were used in an effort to simulate
the constraints on the windshield due to the bolted connections
along the edges. As Figure 2.8 demonstrates, without any
restraint the structural polycarbonate ply could have pulled out
away from the edge in an unrealistic fashion that would have
relieved the stresses at the edges of the structural
polycarbonate ply. The use of linear constraints to simulate the
bolted connections was considered to be too restrictive, leading
to higher-than-actual stresses in the structural ply (because the
constraints are applied at points, not distributed, and because
the constraints are rigid, not elastic). By making the edge
interlayers stiffer, the bolted connection was simulated in a
distributed and elastic manner. Stresses in the edge elements
were not of concern for the edge member analysis (see Section 3.4
for details), so that this method of constraint was acceptable
from an edge member analysis standpoint.

Finally, it was found necessary to increase the
tensile modulus of the silicone for the left side windshield when
acrylic was used for the outer ply. The relatively flexible
acrylic was pushed through the soft silicone into the structural
polycarbonate ply, resulting in unreasonable deformation and
plasticity of the acrylic ply, thus causing numerical
instabilities in the birdstrike analysis. This phenomena

occurred because there was no means to incorporate the silicone
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bulk properties (for example, bulk modulus), which govern
material compression, into the computer model. Increasing the
tensile modulus to 10,000 psi compensated for this limitation and
allowed for a numerically stable solution. No adverse effects on
the results were expected since the load transfer from the
acrylic ply to the structural polycarbonate ply was acceptable,
and since the added stiffness of the silicone layers was still
relatively small compared to that of the structural polycarbonate
ply (tensile modulus ratio of 35.5 to 1 for polycarbonate
compared to silicone).

2.4 Constraints

Fixed boundary conditions were used to model the
windshield-to-fuselage connections, simulating the rigidity of
the actual connections. Rigid connections were modeled along the
sill and forward arch by pinning (constraining x, y, and 2z
translations) all nodes along these edges, as sketched in Figure
2.9. The end nodes of some of the beam elements (see Figure
2.10) were fully constrained to prevent translation and rotation
at the point of connection with other portions of the aircraft.

Linear constraints were necessary to properly couple
the motion of the beam elements to the solid elements to which
they joined. Specifically, these constraints ensured that the
beam elements and solid elements would rotate (twist or bend)
together, not independently. (Note that the beams and solids
already translated together where they shared common nodes.) A
typical constraint is shown in Figure 2.11. Three computer codes
(one each for three different model situations, as shown in
Figure 2.12) were written to generate the linear constraints.
Each code computed the constraints in local coordinates,
translated them into global coordinates, and wrote them in MAGNA
format to files which were later merged into the MAGNA models.

23




Finite Element
Model Simulating
Fixed Edge by
Pinned Connections

Fixed
Edge

Figure 2.9. Modeling of a Fixed Edge Using Pinned
Connections.

24




*Po3edTPUI SOPON POXTJ Y3ITM S3juswalg weag °Qr°z oanbtg

pPexXT3 wopeaxg Jo soaxbag uorzersueay] sejousqg O

P9XTJ WOpasig 3o sa91bsg TIY Se3jousq ¢ \

25




NOTES:

1. Constraints as shown are written in local coordinates. Must
be transformed to global coordinates.

2. The "w" equation is not necessary if the solid element
already connects the vertical translations of nodes 1 and 2
with sufficient stiffness.

Solid Element

‘K\‘~ Beam

Elements
Y.v
%]
X
X,u
u, = uy + L s1ney u, = uy - Lg. =0
Vy = Vy - L 51n9x Linearize vy T Vg + Lex = 0
w. = (Sin 620) _ - 0
2° " Wp = W 7

Figure 2.11. Typical Linear Constraint.
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Matching Rotations of
Parallel Beams and Solids
(Aft Arch, Right Side
Eyebrow to Windshield)

Matching Translations and
Rotations of Parallel
Beams and Solids

(Forward Centerpost to
Windshield)

Matching Rotations of
Perpendicular Beams and
Solids

(Centerpost Beams to Solids)

Figure 2.12. Situations Requiring Linear Constraints.
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2.5 Loads

For the internal pressure analyses, the windshields
were subjected to three different pressure loads, as outlined in
Table 2.5. All pressures were gauge pressures, that is, pressure
above atmospheric (the pressure difference between the cockpit
and outside the aircraft). All interior, inward-facing solid and
layered shell element surfaces were loaded.

Two bird impact sites were used for the baseline
birdstrike analyses, as shown in Figure 2.13. For the trade
studies, only the "worst case" site was used, which was
determined from the baseline analyses. Bird impact was by a 4-
pound bird impacting at 650 mi/hr. Two user subroutines, ULOAD
and USRILOD, were developed using the method discussed in
Reference 9 to compute and apply to the models the loads due to
birdstrike. The method computed loads based on the results of

flat panel testing,10r11

and featured the correct spatial and
time distribution of pressure and force (see Figure 2.14), as
well as "hands-off" operation by the user during MAGNA runs. The
method assumed that the bird was a right, circular cylinder
having a length-to-diameter ratio of 2:1 and density of 0.03433
1b/in3, that the maximum pressure point (located at the first
point of contact between the bird and windshield) remained
stationary, and that no bird spreading occurred (constant width
footprint). Table 2.6 presents the pertinent data describing the
geometry, magnitude, and timing of both the near-center and
corner impact loads.
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Designation

Limit Pressure

Proof Pressure

Ultimate Pressure

TABLE 2.5
INTERNAL (CABIN) PRESSURES

Pressure

(psiqg) Structural Pass/Fail Criterion

10.6 Maintain pressure without yielding
of windshield or support structure

14.1 Maintain pressure without
significant yielding of windshield
or support structure

21.2 Maintain pressure
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Within Footprint Area

Lf(t)
P = Pressure
F = Force
t = Time
Lf = Footprint Length

Force Versus Time History

Fmax |

0.2tmax tmax

Figure 2.14. Birdstrike Load Distributions.
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TABLE 2.6
BIRDSTRIKE LOADS

Near Center

Impact
Impact Angle (deg) 20.5714
Bird Diameter (in) 4.201672
Effective Bird Length (in) 19.5987
Max. Footprint Length (in) 30.3068
Impact Velocity (in/sec) 11,447.8
Normal Velocity (in/sec) 4,022.47
Tangential Velocity (in/sec) 10,717.9
Impact Duration (msec) 1.712
Pressure Rise Time (msec) 0.3424
Peak Total Force (1b) 48,695.9
Peak Pressure (psi) 1,487.2
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Upper Corner

Impact

25.0
4.20167

17.4139

25.7243

11,447.8

4,838.06

10,375.3

1.52115

0.30423

65,917.8

2,395.5




SECTION 3
ANALYTICAL PROCEDURE

Table 3.1 summarizes the various MAGNA analyses that were
conducted. The Phase I (baseline) effort consisted of Cases 1-4,
while the Phase II (trade study) effort consisted of Cases 5-9.

This section briefly describes the three different types
of MAGNA analyses that were performed, namely, natural frequency,
nonlinear static (pressurization), and nonlinear dynamic
(birdstrike) analyses. The reader is referred to the MAGNA
Finite Element Analysis Manual? for additional detailed
information. The analytical procedure used to evaluate the
windshield edge fasteners is also described, though in somewhat
more detail, since this analysis is not a standard MAGNA
capability.

3.1 Eigenvalue Analysis

Eigenvalue analysis (natural frequency analysis) was
performed as a means to check the MAGNA models and as an aid in
selecting a time step for nonlinear dynamic birdstrike analysis.
The frequency and mode shapes generated were studied to reveal
any anomalies due to boundary conditions, linear constraints, or
material properties. The period of the lowest vibration mode of
the left side windshield panel was divided by 100 to give an
estimate of the time step for nonlinear dynamic analysis. The
consistent mass matrix formulation was used in the analyses.

3.2 Nonlinear Static Analysis

Nonlinear static analysis was performed for the
internal pressure loading cases. The material nonlinearity
option was selected because, as noted in Table 2.5, the proof and
ultimate pressure definitions included the possibility of
yielding. Displacements were, however, expected to be small.
Static analysis was appropriate since the time history of the
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TABLE 3.1
MAGNA ANALYSIS CASES

Windshield
Case Configuration

Current Production

2 Current Production

3 Current Production

4 Current Production

5 Acrylic Outer Ply

6 Urethane Interlayer
7 No Spall Ply

8 Split Structural Ply
9 Split Structural Ply
NOTES:

a

b

34

Loads

Natural Frequency
Internal Pressure

Bird Impact at a?

Bird Impact at Bb

Bird Impact at B
Bird Impact at B
Bird Impact at B
Internal Pressure
Bird Impact at B

Location A is near the windshield geometric center

Location B is near the centerpost-to-eyebrow joint




loading and response was not important. The internal pressure
was applied in four successive increments of 5.3 psi, 5.3 psi,
3.5 psi, and 7.1 psi, resulting respectively in total internal
pressures of 5.3 psi, 10.6 psi, 14.1 psi, and 21.2 psi.

Iteration was performed at every increment to obtain convergence
of the solution. The ccubined Newtun-Raphson iteration technique
and default displacement and residual force tolerances were used.

3.3 Nonlinear Dynamic Analysis

Nonlinear dynamic analysis was perrformed for all
birdstrike analyses. The large displacement and material
nonlinearity options were required in anticipation of deflections
of approximately two inches (similar to deflections of the B-1
windshield pane17) and yielding of the windshield plies and/or
frame members. The time step for all analyses was 0.04
millisecond, which was chosen based on the time of contact of the
bird on the windshield (the period of vibration technique
discussed in Section 3.2 above was used only for comparison and
verification to the impact time result). Combined Newton-Raphson
iteration was performed during every fifth increment to ensure
convergence of the solution. Default displacement and residual
stress convergence tolerances were used. The analyses were
stopped and restarted after every fifth increment so that the
convergence and results (displacements and stresses) could be
checked. The analyses were terminated when the displacements and
stresses in the structural polycarbonate ply began to decrease
after having reached their maximum values.

3.4 Fastener Analysis

Table 3.2 presents data pertinent to the NAS1580C4
fasteners used to attach the windshield to the support structure.
The fasteners joining the windshield to the supporting structure
were not modeled explicitly in the MAGNA analyses. Therefore,
the MAGNA results did not provide loads acting on the fasteners.
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TABLE 3.2

NAS1580C4 FASTENER DATA

Material:

Threads per Inch:
Diameter:

Tensile Diameter:

Shear Diameter:

Tensile Area:

Shear Area:

Ultimate Tensile Stress:
Ultimate Shear Stress:

36

A286 Steel
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0.2491%0.0005 inches
0.20238 in

0.25 in

0.0364 in?

0.04909 in?

180,000 psi

108,000 psi




However, it was possible to reduce the available MAGNA data into
the desired fastener loads. The process outlined in Figure 3.1
required that several computer programs be written or modified.
The following paragraphs briefly describe the process by which
the MAGNA results are converted into loads on the fasteners. A
more complete explanation of the fastener analysis procedure is
provided in a separate report (Ref. 12).

The results obtained from the MAGNA analyses were
collected on MAGNA post-processor, or MPOST, files. At each time
increment during each analysis, the stress state in the
transparency model was recorded on an MPOST file. Stress results
contained on the MPOST file were computed at integration points
located on the interior of each element. These values were a
direct result of the numerical analysis using the finite element
method. However, integration point stresses were not appropriate
for subsequent data reduction; nodal stresses were necessary.
Extrapolation from integration point stresses to nodal stresses
occurred in the stress averaging program, STRAVG, which is a
utility in the MAGNA post-processing software package (Ref. 13).
Note that it is these nodal stresses, written to an averaged
post-processor or APOST file, that are displayed in stress
contour plots appearing in Section 4.

Safety margins for the fasteners were determined as a
function of the forces and moments acting on the fasteners, not
directly from the transparency nodal stresses. The computer
program STRSLT, which was modified from a previous version,
converted stresses at node points into equivalent forces and
moments per unit length (stress resultants) by integrating the
nodal stresses through the transparency thickness. Figure 3.2
shows the faces that were integrated.

Written for this analysis, the computer program XFER
converted STRSLT stress resultant information into loads acting
on the fasteners. The stress resultants acting along the
windshield edge were assumed to cause bushing rotation relative
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MAGNA

~7
STRSAVG

<
STRSLT

v
XFER

~

Plotting Pkg.

7
SAFETY

v

Conclusions

MPOST

APOST

stress resultant data

load distribution data

critical loads

safety margins

Figure 3.1. Fastener Analysis Procedure.
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All outward-facing element faces through the windshield

thickness around the perimeter of the panel shown above
were integrated to obtain stress resultants. The visible
faces are cross-hatched.

Figure 3.2. Location of Element Faces that were Integrated

to Obtain Stress Resultants for Fastener
Analysis.
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to the fastener due to the clearance between these components.
Such rotation produced shear forces on the upper and lower
portions of the fastener grip length as indicated in Figure 3.3.
Shear resultants acting through the transparency thickness were
transferred to the frame flanges through the fasteners, resulting
in an axial force in the fastener as shown in Figure 3.4.

The loads (axial, upper shear, and lower shear) were
calculated as a combination of the stress resultants for each of
the five plies in the transparency (seven plies for Case 9) at
every perimeter location. Perimeter locations corresponded
directly with the corner and midside node positions of each
element edge on the transparency perimeter. Figure 3.5 defines
the perimeter location (p) as the distance in inches from the
centerpost-forward arch connection increasing along the
centerpost (p=0 in. to p=54 in.), eyebrow (54-74), aft arch (74-
106), sill (106-157), and forward arch (157+) respectively.

Plot files written by XFER contained the axial and
shear load components as functions of the perimeter position.
sigma-Plot,14 a commercially available scientific graph plotting
program for IBM PC and compatible computers, was used to display
the load resultants graphically, although any stand-alone
plotting package could have been used. One plot was generated
for each fastener load component (axial, upper shear, and lower
shear) for each baseline and trade study analysis.

Since the fasteners were always loaded in tension,
negative axial loads did not indicate compression. The sign of
the axial load only indicated the direction of load application,
which was the direction of the windshield shear load shown in
Figure 3.4. The magnitude of the upper and lower fastener shear
loads were displayed on the graphs, but the directions of the
shear loads were not output from XFER.

The critical loads acting on the fasteners were taken
directly from the plots. Shear and axial effects were considered
both independently and together. The combined effects of shear
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Figure 3.3. Shear Loads Applied to Fastener.
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Figure 3.4. Axial Load Induced in Fastener.
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and tension were accounted for, using the following interaction

equation:23
ry 2 3
(St/St) + (SS/Sé) <1
where St = actual tensile stress on fastener, psi,
Sé = allowable tensile stress on fastener, psi,
Sg = actual shear stress on fastener, psi,
Sé = allowable shear stress on fastener, psi.

Combined values greater than one imply fastener failure. The
computer program SAFETY was written to determine the margins of
safety against various failure modes (fastener tension and shear,
transparency bearing and rupture) for given geometry and critical
load conditions. Figure 3.6 describes each of the four failure
modes considered in the analysis. SAFETY also computed fastener
margins assuming every other fastener was deleted. Note that
fastener preload was considered in performing all calculations.

44




Fastener l
Axial
Failure

Windshield ;:1::)::::::1:21::X::

Rupture

Failure

-
o
— AW

Fastener

Shear

Failure

é_

@)

é«

Figure 3.6. Fastener System Failure Modes.
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SECTION 4
RESULTS AND DISCUSSION

Four categories of results were obtained: natural
frequencies and mode shapes, deformed shapes and displacement
time histories, stress contours, and fastener loads and margins
of safety. The appropriate results are presented by category for
each analysis type (natural frequency, internal pressure, and
birdstrike) to facilitate comparison and discussion among the
different run cases. Discussion of fastener performance,
including the effects of removing every other fastener, is
included in the pressure and birdstrike discussions. Fastener
tolerance is discussed separately in Section 4.5. For quick
reference and comparison, Section 4.6 provides a concise summary
of all results without detailed discussion.

4.1 Natural Frequency Analysis Results

The lowest vibration mode of the Case 1 left side
windshield occurred at 163 Hz. Figure 4.1 shows the vibration
mode shape. The corresponding period of vibration was calculated
as the reciprocal of the natural frequency, resulting in a period
of 0.0061 second. Dividing by 100 to obtain an estimate of the
time step for nonlinear dynamic birdstrike analysis resulted in a
step size of 0.000061 second. The order of magnitude of this
estimate is the same as that of the chosen step size of 0.00004
second, verifying this choice. However, the value of 0.000061
was considered too large in view of the brief time the bird would
be in contact on the windshield (see Table 2.6) and in view of
the high stiffness of the windshield, which would tend to respond
closely in phase with the loading (compared with a flexible
windshield, like the F-16, in which the response would lag well
behind the loading because of the greater influence of inertia).
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4.2 Internal Pressure Analysis Results

Maximum displacements for the internal pressure
analyses occurred at approximately the centroid location of the
- left side windshield panel and were small, as expected. The
total displacement was 0.104 inch for node 2029 of Case 2 and
0.107 inch for node 2740 of Case 8 (node located on the outer
surface of the structural ply) at the maximum (ultimate) pressure
of 21.2 psi.

Figures 4.2 and 4.3 present Von Mises equivalent
stress contours for the structural polycarbonate ply (plies) of
the Case 2 and Case 8 analyses at the ultimate pressure. The
maximum stress was approximately 500 psi, well below the 12,000~
psi yield stress of polycarbonate. In addition, the maximum
equivalent stress in the glass ply was 11,850 psi for Case 2 and
9,933 psi for Case 8, below the ultimate stress of 18,000 psi,
implying that the glass ply remained intact. Therefore both the
current production and split polycarbonate ply windshield panel
configurations were adequate for resisting the internal pressure
loads. Since the Case 5-7 windshields used the same structural
polycarbonate ply configuration as the current production
windshield, the windshield panels for these cases should also be
adequate for resisting all internal cabin pressure up to the
ultimate pressure.

As a simple qualitative check on the results, the
windshield was analyzed as a portion of a thin-walled monolithic
polycarbonate cylindrical pressure vessel (the windshield panel
geometry is, in fact, that of a right circular cylinder of 50

inch outer mold line radius). The stresses were computed from: 1>

Hoop Stress: Sh pr / t

Axial Stress: Sa

pr / (2t)
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where p = internal pressure, psig
r = nominal radius, in
and t = windshield thickness, in.

For Case 2, p = 21.2 psig, r = 49.21 in, and t = 0.87 in. The
resulting hoop stress was 1,200 psi while the axial stress was
600 psi. The order of magnitude of these numbers agreed well
with the MAGNA stress results, verifying the computer analysis.
(Note that the MAGNA results were lower because the other
windshield layers and the support structure helped resist the

pressure load.)

Figures'4.4 and 4.5 show equivalent stresses in the
centerpost frame for Case 2 and Case 8 at 21.2 psi. The stresses
were low (4,000 - 5,000 psi), well below the yield stress of
50,000 psi. Note that the stresses in the forward-most
centerpost solid elements rose sharply to 20,000 to 25,000 psi.
This stress gradient was artificial, occurring due to the linear
constraints joining the centerpost beam elements to the
centerpost solid elements. The actual stresses in this region
should have ween similar to those for the remaining portions of
the centerpost. 1In addition to the centerpost, stresses in the
eyebrow and aft arch were also well below yield, as shown in
Table 4.1. Thus the centerpost, eyebrow, and aft arch were
adequate for resisting internal pressures of up to 21.2 psigq.

Figures 4.6 and 4.7 describe the loads acting on the
fasteners for the baseline and trade study internal
pressurization analyses, respectively. For the baseline case,
the largest axial and shear loads were found along the eyebrow
near the aft arch connection (p=74 in.). For the trade study
case, the largest fastener shear loads were located in the
forward-most section of the centerpost where the linear
constraints used in the modeling produced artificially high
values (see previous paragraph). The largest axial load was
along the eyebrow in a position similar to the baseline case.
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Component

Forward
Centerpost

Aft Centerpost

Eyebrow

Aft Arch

TABLE 4.1
MAXIMUM STRESSES IN SUPPORT STRUCTURE
DUE TO INTERNAL PRESSURIZATION

Yield Stress Maximum Component Stress (ksi)
(kpsi) Case 2 Case 8
50. 5. 4.
56. 7.4 3.4
56. 4.5 6.5
56. 5.8 2.9
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Figure 4.6. Fastener Load Distribution, Case 2.
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Fastener Load Distribution, Case 8.
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The load distribution plots for both of the
pressurization analyses were plotted with the same scaling used
in the subsequent birdstrike analyses. The 21.2 psig internal
pressure produced fastener loads which were relatively
insignificant ccrpared with the loads due to birdstrike. The
axial loads for both pressurization cases were positive,
indicating that the axial load in the fasteners acted toward the
upper surface, as was expected. Note that the "spike" in the
load plots near p=74 inches was due to linear constraints and
was thus artificially high. These values were therefore ignored
in determining the maximum fastener loads.

Table 4.2 shows the critical pressure loads and the
percent change in these loads resulting from the split structural
ply windshield configuration. The pressurization trade study
analysis exhibited a load distribution character similar to the
baseline case, but the loads were diminished by 21% to 40%.

These loads were used to calculate the safety margins and
interaction numbers indicated in Table 4.2.

The large safety margins indicated that the pressure
loads were significantly below critical. The smallest safety
margin for baseline study (4.64 in fastener shear) indicated that
the fasteners were more than 4.64 times stronger than necessary
for such loading. The trade study safety margins were more than
three times larger than the baseline values. Even with every
other fastener removed from the current windshield configuration,
the minimum safety margins for Cases 2 and 8 were 1.82 and 2.58,
respectively. Note that the combined tension/shear results

. follow the same trends as the individual tension and shear
margins of safety.

All of the analyses conducted had a main structural
ply identical to that of Case 2 or Case 8. Since the majority of
the applied load (70%-80%) was carried by this ply to the
fasteners, the results for Cases 2 and 8 were representative of

all the baseline and trade studies. Thus the fasteners for all
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TABLE 4.2

FASTENER SAFETY MARGINS FOR THE
INTERNAL PRESSURIZATION ANALYSES

Case 2 Case 8
Critical Loads
Axial (1b/in) 200. 130.
Upper Shear (1lb/in) 610. 480.
Lower Shear (lb/in) 600. 360.
Percent Change in load
from the baseline values
Axial - -35.0
Upper Shear - -21.3
Lower Shear - -40.0
Safety Margins
Fastener Tension 3.12 3.30
Fastener Shear 4.64 6.17
Transparency Bearing 6.50 8.53
Transparency Rupture 20.91 26.84
Safety Margins
(50% fastener removal)
Fastener Tension 1.06 1.15
Fastener Shear 1.82 2.58
Transparency Bearing 2.75 3.77
Transparency Rupture 24.66 31.61
Interaction Relation
All Fasteners Present 0.06 0.06
50% Fastener Removal 0.28 0.24

Note: Safety margins < 0.0 indicate failure

Interation relation values > 1.0 indicate failure
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cases were adequate to resist internal pressures up to 21.2
psig.

In conclusion, the current production windshield
system and each of the trade study windshield system
configurations were sufficiently designed to resist internal
cabin pressures of up to 21.2 psi above outside atmospheric
pressure without permanent deformation to the windshield and
immediate support structure and without failure of the fasteners.

4.3 Baseline Birdstrike Results

Figures 4.8 and 4.9 present the deformed shapes of
the left side windshield panels for the near-center (Case 3) and
upper corner (Case 4) analyses. The deformed shapes looked as
expected, with the pocket formed due to bird impact being rather
shallow because of the high stiffness of the windshield.

Figure 4.10 shows the displacement time histories for
the nodes experiencing the greatest displacement during the
analyses. (The node locations are shown in Figure 4.11.) The
maximum displacement for the near-center analysis was 1.4 inches
compared to 1.0 inch for the upper corner shot. Maximum
displacement during birdstrike testing of the B-1A windshield was
2.15 inches for near-center impact.7 The lower analytical
near-center displacement may have resulted in part from the
differences in planform and cross-sectional geometry and outer
ply materials between the B-1A and B-1B windshield systems. 1In
addition, mapping of the near-center bird loads over too large an
area contributed to the smaller analytical displacement. Figure
4.12 illustrates this situation. The bird footprint was assumed
to be a constant width (equal to the diameter of the bird) for
computing the impact loads. But the computed loads then had to
be mapped onto the finite elements, which, because of the rather
coarse element mesh used, were significantly wider than the bird
footprint. Thus, though the total load applied to
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the windshield was correct, the intensity of the loading (that
is, the pressure) for the near-center shot was too small, leading
to reduced displacema2nts. For purposes of these analytical
studies these differences should not effect the validity of the
results. However, actual stresses resulting from near-center
birdstrike could be slightly higher than computed values. The
geometry of the loaded upper corner finite elements better
matched the bird footprint geometry, resulting in more accurate
values of applied pressure and therefore more accurate
displacements.

Finally, it should be noted that the time required tc
reach peak displacement for the upper corner analysis was only
approximately seventy percent of the time required for the
near-center analysis. This more rapid response was indicative of
the higher stiffness in the upper corner windshield panel due to
the constraint of the frame members.

Figures 4.13 and 4.14 present equivalent stress
contours on the highest stressed surfaces of the structural and
spall polycarbonate plies for the near-center birdstrike analysis
at the increment of maximum stress in the structural ply. The
highest polycarbonate stresses for the near-center shot were
5,000 psi for the structural ply located at the impact site, and
6,000 psi for the spall ply located four inches aft of the impact
site. These stresses were well below yield for polycarbonate,
indicating that the current production windshield panel
successfully defeated a near-center impact by a 4-pound bird at
650 mi/hr with no permanent deformation.

Figures 4.15 and 4.16 show that the peak structural
ply stresses for the upper corner impact occurred at the
interface between the windshield and eyebrow frame, and that the
magnitude was twice that for the near-center shot. It was
apparent that the constraint due to the frame member caused
concentration of the stresses at the edge of the windshield when
the bird impacted near the edge. The maximum stress magnitude in
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the structural ply was 12,000 psi, indicating that the
polycarbonate had yielded. Figure 4.17 shows that the maximum
equivalent strain in the structural ply due to upper-corner
impact was 0.080 - 0.085 in/in (8.0% - 8.5% strain), exceeding
the yield strain for polycarbonate of 3.38% (see Table 2.4). The
fact that the structural polycarbonate ply yielded did not mean
that the windshield was on the verge of failure. Polycarbonate
exhibits high post-yield elongation to ultimate failure (115% -
125% plastic strainls), so that substantial yielding would occur
prior to fracture. The contour plots therefore indicated that
the current production windshield panel successfully defeated an
upper corner impact by a 4-pound bird at 650 mi/hr without
fracture and with little-to-no permanent deformation.

Figure 4.18 indicates that the stresses in the
centerpost web were below yield for the near-center shot (12,000
- 20,000 psi). Again, stresses were artificially high at the
forward-most edge due to linear constraints applied to nodes
along this edge. Eyebrow stresses (Figure 4.20) were even lower,
so that these frame members were sufficient to resist impact by a
4-pound bird striking the near-center impact location at 650
mi/hr.

Figures 4.19 and 4.21 present equivalent stress
contours for the centerpost and eyebrow frames resulting from
upper corner impact. The centerpost web stresses were
significantly higher than those for the near-center impact,
although the maximum stress was still below the yield point for
2024-T62 (40,000 psi computed versus 50,000 psi yield). The
eyebrow stresses were very high, especially in the web between
the lower and middle flanges (contour value of 70,000 psi). The
yield and ultimate stresses for 7075-T73 were assigned values of
64,851 psi for the MAGNA model. The maximum integration point
stresses in the web (elements 363 and 364) was 67,100 psi.
Extrapolation of the integration point stresses to the nodes to
obtain surface contour stress plots resulted in a maximum stress
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contour of 70,000 psi. These stresses were higher than the yield
and ultimate stresses because the time step and strain
subincrement used did not allow precise tracking of the stress-
strain curve when it abruptly changed slopes from the elastic
(slope equal to the modulus of 10 x 106 psi) to the perfectly
plastic (slope of 0 psi) region. These stress values were
therefore artificially high, making it impossible, without
additional information, to determine whether the web was
fractured or just permanently deformed.

The additional information needed was the equivalent
strain corresponding to the equivalent stresses. Figure 4.22
presents these strains for the eyebrow web. The maximum
equivalent strain was 0.035 in/in (3.5% strain). From MIL-HDBK-
5018, the ultimate elongation for a 7075-T73 die forging, such as
the eyebrow frame, is 7% in the longitudinal direction and 3% in
the transverse direction. (High strain rate data from Reference
24 and similar undocumented in-house data shows that the
elongations for the various aluminum alloys tested in these
programs were as great or greater than the elongations obtained
from quasi-static tests. Therefore, it was reasonable to assume
that the high strain rate elongations for the 7075-~T73 eyebrow
material, which was not tested in these programs, were at least
equal to the low strain rate handbook values.) The difference in
elongation is due to the formation of grains parallel to the
longitudinal axis of the part due to the die forming process.
The value of the analytical equivalent strain lies between the
two allowable elongation values, indicating a marginal pass/fail
condition in the eyebrow web. Additional comparison of
individual stress and strain components with handbook allowables
verified a marginal pass/fail condition in the eyebrow web near
the connection to the centerpost.

It should be noted that this critical location was
the same location where the B-1A eyebrow failed during birdstrike
testing at the upper corner impact site.1 However, due to the
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borderline pass/fail nature of the MAGNA results and the
simplifications of the MAGNA model compared with the actual
hardware, no definite conclusion can be drawn regarding whether
or not the B-1B eyebrow will pass upper corner birdstrike without
failure. The results dc indicate that fracture of the eyebrow
web is possible due to birdstrike in the upper corner of the
windshield by a 4-pound bird impacting at 650 mi/hr.

Fastener load distribution curves for the baseline
near-center impact (Case 3) and the baseline upper corner impact
(Case 4) are presented in Figures 4.23 and 4.24, respectively.
The loads for both birdstrike simulations were several times
greater than those for the internal pressurization analysis of
Case 2 (see Figure 4.6) which had the same geometry. The impact
loads for the near-center impact dispersed widely over the
transparency. The loads were carried predominantly by the
fasteners along the centerpost and sill in shear and to a lesser
extent by the fasteners of the forward arch in tension. 1In
contrast, the loads resulting from the upper corner impact were
highly localized near the centerpost-eyebrow connection (p=54)
due to the high stiffness of the support structure in close

proximity to this region.

The geometry and rigidity of the centerpost-eyebrow
connection reduced the loads in the fasteners nearest the corner
of the joint. This produced the double spike in the load
distribution curves for Case 4. The double spike behavior was
also evident in the contour plots of Figures 4.15 and 4.16. Note
the high stresses in the polycarbonate on either side of the
centerpost-eyebrow corner, but the relatively low stresses
nearest the corner. Both baseline cases produced negative axial
loads near the impact indicating that the fastener axial loads
were directed inboard toward the crew enclosure.

Table 4.3 shows the critical axial and shear loads
and the corresponding safety margins and interaction numbers for
both baseline birdstrike studies. The fastener loads generated
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TABLE 4.3

CRITICAL FASTENER LOADS AND SAFETY MARGINS FOR THE
BASELINE BIRDSTRIKE ANALSIS

Case 3 Case 4
Critical Loads
Axial (1lb/in) 700. 2010.
Upper Shear (1lb/in) 860. 1740.
Lower Shear (lb/in) 970. 1060.
Safety Margins
Fastener Tension 2.18 0.99
Fastener Shear 2.55 0.98
Transparency Bearing 3.72 1.63
Transparency Rupture 12.78 6.68
Safety Margins
(50% Fastener Removal)
Fastener Tension 0.59 -0.01
Fastener Shear 0.77 -0.01
Transparency Bearing 1.36 0.32
Transparency Rupture 15.14 8.00
Interaction Relation
All Fasteners Present 0.12 7.38
50% Fastener Removal 0.57 2.05

Note: Safety margins < 0.0 indicate failure

Interaction relation values > 1.0 indicate failure
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by the near-center impact were significantly lower than those for
the upper corner impact. The minimum safety margin for fastener
shear was 2.5 for Case 3, but only 0.98 for Case 4. Both were
safe, but the higher stresses from the upper corner impact caused
safety margins which were approximately one-half of those for the
near-center impact. With every other fastener removed in the
simulation, the near-center impact did not produce failure in the
fasteners, but the upper corner impact did induce fastener
failure adjacent to the impact area. These same trends are also
indicated by the combined tension/shear interaction numbers.

In summary, the analyses indicated that the current-
production windshield was capable of defeating a 4-pound bird
impacting at the near-center site at 650 mi/hr. The analyses
further indicated that bird impact at the upper corner location
was more severe than impact at the near-center location, result-
ting in permanent deformation of the eyebrow frame (and possibly
fracture in the eyebrow web) and the structural polycarbonate
ply. Fastener margins of safety were reduced 50% compared with
the near-center shot. The results of the fastener analysis
showed that the fasteners of the current B-1B transparency design
can withstand both near-center and upper corner impacts by a 4-
pound bird at 650 mi/hr without failure. Removing every other
bolt would lead to fastener failure adjacent to the impact
location for upper corner impact. Removing every other bolt did
not induce fastener failure for near-center impact.

4.4 Trade Study Birdstrike Results

As discussed in Section 4.3, the baseline birdstrike
analyses indicated that the upper corner impact was more severe
than the near-center impact in terms of the stresses applied to
the windshield panel and the supporting frame members. For this
reason, the upper corner impact site was used for all trade study
analyses. No near-center birdstrike analyses were performed for
the trade studies.
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Figure 4.25 compares the displacement time histories
at the same location for each trade study (node 1367 for Cases 5-
7 and node 1793 for Case 9). This location was the maximum
displacement location on the outer surface of the outermost
structural polycarbonate ply of the windshield (see Figure 4.26).
The baseline (Case 4) curve for the same location is included for
comparison. The‘changes in displacement due to the changes in
windshield configuration followed expected trends. For Case 5
and Case 6, a stiffer ply material was substituted for a more
flexible baseline 'ply material, resulting in a stiffer windshield
panel. The peak deflections therefore decreased compared to
baseline, with Case 5 decreasing most (twelve percent decrease
due to using acrylic instead of shattered glass, which had
negligible stiffness), followed by Case 6 (seven percent due to
substituting urethane for silicone). Cases 7 and 9 were more
flexible than the baseline configuration, resulting in increased
peak displacement. Case 7 and Case 9 resulted, respectively, in
deflection increases of twelve and twenty-nine percent due to
eliminating the spall ply (Case 7) and splitting the
polycarbonate ply (Case 9). As Figure 4.25 demonstrates, the
Case 9 change to the polycarbonate ply had the greatest effect on
windshield displacement, significantly increasing the deflection
and shortening the time to peak displacement. The deflection
increases were due to the use of low strain rate properties for
the interlayers, so that the actual change in windshield
stiffness was not realized for Case 9. Deflections for all cases
were relatively small, however, presenting no danger to the pilot
and co-pilot.

Figures 4.27 - 4.34 present equivalent stress
contours on the upper outer surface of the structural
polycarbonate ply (upper surface of the upper (outer)
polycarbonate ply for Case 9), which was the highest stressed
windshield surface for the upper corner impact trade studies.
The corresponding baseline stress contour plots are presented in
Figures 4.15 and 4.16. The trade study contours were very
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similar to the baseline contours, showing high stresses at the
windshield-eyebrow and windshield-centerpost interfaces. The
contours in these regions had values of 12,000 psi, indicating
that yielding of the structural polycarbonate ply has occurred.
The yielded zone was larger at the eyebrow interface than at the
centerpost interface, implying that the eyebrow-windshield
interface was the highest stressed location on the windshield
panel for the upper corner impact. Figures 4.35 - 4.38 present
the equivalent strains in this region for the trade study
birdstrike cases. Maximum equivalent strains were 0.075 in/in
for Cases 5 and 6, 0.090 in/in for Case 7, and 0.16 in/in for
Case 9, well below the strain to failure for polycarbonate (1.15
- 1.25 in/in). Maximum equivalent strain for the baseline case
(Case 4 - see Figure 4.17) was 0.080 in/in. The structural
polycarbonate plies therefore yielded similar to the current
production configuration structural ply, but did not fracture.

Review of the output data showed that the highest
stresses in the support structure occurred in the eyebrow web
near the connection to the centerpost. This was true for all
trade study cases as well as the baseline case. Figures 4.39 -
4.42 present the trade study eyebrow stress contours while Figure
4.20 presents the baseline contours. As was the case for the
baseline upper corner impact analysis, the region of highest
stresses was located in the eyebrow web between the lower,
forward-facing flange and the aft-facing flange (see Figure 2.4
for the location of these flanges), with values of up to 70,000
psi. Stresses of this magnitude also occurred in the flanges at
the connection with the centerpost flanges, although the extent
of the highest stress region in the flanges was smaller than that
of the web. Note that the reported stresses exceeded the
ultimate stress of the 7075-T73 aluminum alloy, a physically
impossible situation. As discussed in Section 4.3, the stresses
were artificially high, and should have been equal to the

yield/ultimate stress value (the same value of stress was used
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for both yield and ultimate since perfect plasticity was

assumed) .

Figures 4.43 - 4.46 present equivalent strain
contours in the lower portion of the eyebrow web near the
connection to the centerpost. The maximum equivalent strains in
the high stress regions ranged from 0.035 in/in to 0.040 in/in,
greater than the static transverse ultimate elongation of 0.03
in/in, but less than the static longitudinal ultimate elongation
strain of 0.07 in/in. The contour values are similar to those
for the current production configuration (Figure 4.22). As
discussed in Section 4.3 for the current production configura-
tion, the MAGNA results for the trade study cases indicate a
marginal pass/fail (fracture) condition in the eyebrow web due to

upper corner impact by a 4-pound bird at 650 mi/hr.

Review of data for the centerpost showed that the
maximum centerpost stresses in the web were 40 kpsi for Cases 4,
5, and 6, 45 kpsi for Case 7, and 50 kpsi for Case 9. Thus only
Case 9 showed centerpost yielding, with a total strain of 0.013
in/in, less than the strain to failure of 0.05 in/in for 2024-T62
aluminum. The centerpost was therefore adequately designed to
resist impact by a 4-pound bird impacting at the upper corner
location at 650 mi/hr without fracture for all configurations and
without permanent deformation for all but the split structural
ply configuration.

Figures 4.47 - 4.50 show the fastener load
distribution curves for Cases 5, 6, 7, and 9 respectively. All
the plots displayed the highly localized effect that was evident
in the baseline study (see Figure 4.25). Similar characteris-
tics were expected because the majority (70%-80%) of the impact
energy was carried by the main structural ply which remained
unchanged between the baseline and trade study cases (except for
the split structural ply in Case 9).

Table 4.4 displays the maximum axial and shear loads
and the percent change from the baseline values. Generally the
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TABLE 4.4

CRITICAL FASTENER LOADS FOR THE
UPPER CORNER IMPACT ANALYSES

Case Axial Upper Shear Lower Shear Percent Change from Baseline
No. (1b/in) (1b/in) (1b/in) Axial Upper Shear Lower Shear
4 2010. 1740. 1060. - - -
5 1740. 1410. 800. -13.4 =-19.0 =24.5
6 1750 1490 930. -12.9 -14.4 -12.3
7 1750 1870 800. -12.9 + 7.5 =-24.5
9 1330 1240 2050. -33.8 -28.7 +93.4
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trade study values were smaller than the baseline study values
but some variations increased the fastener loads. Both the
acrylic outer ply (Case 5) and the urethane interlayer (Case 6)
configurations reduced all three fastener loads by over ten
percent. Elimination of the spall ply (Case 7) diminished the
axial and lower shear loads but increased the upper shear load.

Splitting the main structural ply produced smaller
fastener loads for the internal pressurization case (see Section
4.2), but did not affect the dynamic birdstrike response in the
same manner. The axial and upper shear loads were significantly
reduced from the baseline birdstrike values, but the lower shear
load nearly doubled. However, the maximum shear load (lower
shear) which was used in the safety margin calculations for Case
9 was only 18% larger than the maximum shear load (upper shear)
for the baseline birdstrike study.

Table 4.5 shows the safety margins for each upper
corner impact analysis. The smaller loads for Cases 5 and 6
produced larger safety margins for all eight failure modes than
those of the baseline study. The safety margins for fastener
shear, transparency bearing, and transparency rupture were lower
for both Cases 7 and 9. The fastener shear safety margins of
0.84 and 0.68 for Cases 7 and 9, respectively, were significantly
smaller than the baseline margin (0.98) and were the most
critical among all the birdstrike analyses. Similar to Case 4,
when every other fastener was removed, all the dynamic trade
study analyses were on the verge of, if not at, failure. The
combined tension/shear interaction numbers followed trends

similar to the independent tension and shear margins of safety.

In summary, the MAGNA analyses indicated that all
trade study configurations as well as the baseline (current

production) configuration were marginally capable of defeating a
4-pound bird impacting at the upper corner location at 650 mi/hr.
The MAGNA results indicated that, for the upper corner
birdstrike, the structural polycarbonate ply (plies) and the




TABLE 4.5

FASTENER SAFETY MARGINS FOR THE
UPPER CORNER IMPACT ANALYSES

Case 4 Case 5 Case 6 Case 7 Case 9
Safety Margins

Fastener Tension 0.99 1.16 1.15 1.15 1.47
Fastener Shear 0.98 1.44 1.31 0.84 0.68
Transparency Bearing 1.63 2.25 2.07 1.45 1.23
Transparency Rupture 6.68 8.48 7.97 6.15 5.52

Safety Margins
(50% fastener removal)

Fastener Tension -0.01 0.08 0.07 0.07 0.23

Fastener Shear -0.01 0.22 0.15 -0.08 ~0.16

Transparency Bearing G.32 0.62 0.54 0.22 0.12

Transparency Rupture 8.00 10.10 9.51 7.37 6.64
Interaction Relation

All Fasteners Present 0.38 0.28 0.30 0.38 0.38

50% Fastener Removal 2.05 1.42 1.52 2.15 2.35

Note: Safety margins < 0.0 indicate failure

Interaction relation values > 1.0 indicate failure
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eyebrow frame permanently deformed, with the eyebrow frame
exhibiting a marginal pass/fail (fracture) condition. The
location of the highest strains and stresses in the eyebrow frame
(in the web between the bottom two flanges) was the same location
where fracture occurred during upper corner birdstrike testing of
the B-1A. No definite conclusion can be drawn regarding whether
or not the B-1B eyebrow frame will pass upper corner birdstrike
by a 4-pound bird at 650 mi/hr. The results indicate that
fracture in the eyebrow web is possible under such conditions.
Fracture of the B-1B structural polycarbonate ply (plies) should
not occur unless the elongation to failure of the polycarbonate
is degraded (due to, for example, improper material processing,
embrittlement, or stress concentration).

The performance of the various configurations was
similar, although the use of low strain rate interlayer material
properties for the split polycarbonate ply configuration resulted
in increased windshield deflection and structural ply yielding,
and permanent deformation of the centerpost. Since the upper
corner location was determined to be more severe than the near-
center impact site, all windshield configurations should be
capable of defeating a 4-pound bird impacting at the near-center
site at 650 mi/hr.

The fastener analysis of the trade study cases
determined that the current fastener design was adequate for
surviving an upper corner impact birdstrike at 650 mi/hr by a
4-pound bird. The acrylic outer ply and the urethane interlayer
configurations improved the fastener safety margins, but the
removal of the spall ply and the split structural ply did not.
The safety margins determined when every other fastener was
removed were bordering on failure. It is therefore recommended,
based on the load distribution plots in Figures 4.24 and 4.47 -
4.50, that all existing fasteners be retained within 10 inches of
either side of the eyebrow-to-centerpost corner
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connection (that is, do not delete every other fastener in this
region. The decision on whether or not to delete fasteners in
other regions should be based in part on additional birdstrike
analyses with impact sites located near each region of interest,
since such impact conditions result in the highest birdstrike-
induced loads in the fasteners of interest.

4.5 Fastener Tolerances

Concern had been expressed that the hole tolerance
for the windshield fasteners was too restrictive, making
windshield changeout slow and tedious. Specifically, it was
thought that the hole tolerance was plus or minus 0.0005 inch,
which, due to alignment mismatches caused by thermal expansion
effects, required that changeout be accomplished in a narrow
temperature range of 72°F +/- 5°F. To alleviate the alignment
problems, it was desired to increase the tolerance to a target
value of 0.010 inch. An objective of the current study was to
determine if the increased tolerance would adversely affect the
structural performance of the windshield system.

Figure 4.51 presents a sketch of the B-1B fastener
system geometry. Note that the hole tolerance is actually
+0.005, -0.0043 inch. The hole reaming operation is performed in
a controlled environment during the fabrication process, and is
not performed at the field or depot level as part of the
windshield changeout process. Note further that the fasteners
are not inserted directly into these holes. Rather, bushings are
inserted first and then the bolts are inserted into the bushings.
The critical tolerance for windshield changeout is therefore the
clearance between the fastener and the bushing. As Figure 4.51
indicates, a total of 0.015 to 0.017 inch fastener-to-bushing
tolerance is present in the existing B-1B fastener system (based
on a nominal fastener diameter of 0.25 inch). 1In addition, the
tolerance between the fastener and the support structure flange
or retainer is 0.01 to 0.015 inch. Both of these tolerances are

116




NAS1580C4
Fastener

P
o )
c <
< S g
e iy Ov— -—
£ o o O |
~ 2 ° '—I\O m
(23] S}lggm' 8
| 'S 3 <
(e} o o I\Oo -
o N 0
2 + + +
[ <t O W O O W !
o NNNVVN o |
B O 0O 00O o g
c
o m i v n n n . 8
[}
g <m0 OO0 W w '8 :
o S :
=
-
(]
=
by
: >
s O 2 ;
c = c o “
o < 3 : ;
') 3 £ E :
It
[
m
—
|
m

7 AN

Figure 4.51.

s NS ” . .

117




equal to or larger than the previously mentioned target tolerance
of 0.010 inch. 1In addition, the B-1A fastener-to-bushing

16 The current B-1B windshield

tolerance was only 0.007 inch.
fastener-to-bushing tolerance, which is larger than the target
and B-1A tolerances, is therefore believed to be adequate for

facilitating windshield changeout.

Birdstrike tests of the B-1A windshield had been
performed in an effort to evaluate the effect of increasing the

16,17 As mentioned previously, the

fastener-to-bushing tolerance.
B-1A standard tolerance was 0.007 inch. The enlarged tolerance
was 0.050 to 0.073 inch, considerably larger than the current B-
1B maximum tolerance of 0.017 inch. The test results for shots
BM004 and BM006 indicated that the enlarged holes did not degrade
the structural performance of the windshield system. Deflections
were nearly equal (within five percent) and no damage to the
polycarbonate structural plies or the supporting frames was
observed. 1In light of these test results, and because the
existing B-1B tolerance is less than the enlarged B-1A test
tolerance, the results of the fastener analyses are believed to
be representative of the performance of the current production
windshield system fasteners. 1In other words, the tolerance does

not change the reported results.

4.6 Summary of Results

Table 4.6 summarizes the MAGNA results for the
baseline (current production) and trade study (split structural
polycarbonate ply) internal pressurization analyses. Because the
other trade study configurations utilized the same structural ply
as the baseline, and because this ply bears 70% - 80% of the
applied load, the performance of these other trade studies was
judged to be similar to that of the baseline configuration. The
results therefore showed that the current production windshield
system and each of the trade study windshield system
configurations were sufficiently designed to resist internal
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TABLE 4.6
SUMMARY OF RESULTS FOR MAGNA PRESSURIZATION ANALYSES

Case Number 2 8

Category Baseline Trade Study

Model Description Current Production Split Structural
Windshield Ply

Maximum Deflection (in) 0.104 0.107

Maximum Polycarbonate

Structural Ply Stress

(kpsi) 0.5 (12) 0.5 (12)
Glass Ply Stress (psi) 11.9 (18) 9.9 (18)

Maximum Centerpost
Stress (kpsi) 5. (50) 4. (50)

Maximum Eyebrow
Stress (kpsi) 4.5 (56) 6.5 (56)

Maximum Aft Arch
Stress (kpsi) 5.8 (56) 2.9 (56)

NOTE: Numbers in parentheses are yield stresses, in kpsi,
for the indicated windshield system component.
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cabin pressures of up to 21.2 psi above outside atmospheric
pressure without permanent deformation to any of the windshield
components.

Table 4.7 and Figures 4.52-4.54 summarize the MAGNA
results for the baseline and trade study birdstrike analyses.
The baseline (current production) analyses indicated that the
current-production windshield was capable of defeating a 4-pound
bird impacting at the near-center site at 650 mi/hr. The
analyses further indicated that bird impact at the upper corner
location was more severe than impact at the near-center location,
resulting in permanent deformation of the eyebrow frame (and
possibly fracture in the eyebrow web) and the structural
polycarbonate ply.

The marginal condition is indicated in Figure 4.54 by
the region between 3% and 7% strains, which coincides with
ultimate elongation in the transverse and longitudinal
directions, respectively. The maximum MAGNA equivalent strains
for all upper corner impact cases fall in this region.

Additional MAGNA data verified that the state of strain/stress in
the eyebrow web due to upper corner impact was marginal.

Table 4.8 and Figure 4.55 summarize the results of
the baseline and birdstrike fastener analyses for both the
pressurization and birdstrike loading. Note that values inside
(below) the curve of Figure 4.55 indicate fastener pass, while
values outside the curve indicate fastener failure. The safety
margins for the pressurization analyses were large, indicating
that the current production and trade study windshield fasteners
were sufficiently designed to resist internal cabin pressures of
up to 21.2 psi above the outside atmospheric pressure. (Note
that the trade study configurations for which no pressurization
margins are given were expected to give similar results since
they utilized the same structural polycarbonate ply, which
transfers 70% - 80% of the applied load to the fasteners.)
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With all fasteners present, all birdstrike fastener
margins are positive, indicating that the fasteners were
sufficient to resist both near-center and upper corner birdstrikes
without failure. (Note that, since the upper corner impact was
more critical than the near-center iupact, and since the fastener
performance was acceptable for all upper corner impacts, it was
inferred that the fastener performance would also be acceptable
for near-center impact on those trade study configuarations that
were not explicitly analyzed for this impact condition.) The use
of acrylic for the outer ply or urethane for the interlayers
improved the fastener margins somewhat, while removing the spall
ply or splitting the structural ply reduced the margins somewhat.
With every other fastener removed, the safety margins and
interaction numbers were still acceptable for the near-center
impact, but were approximately the critical values (0 for margin
of safety, 1 for interaction) for upper corner impact, meaning
that fastener failure occurred. It is therefore recommended,
based on the MAGNA results, that all fasteners be retained within
10 inches of either side of the eyebrow-to-centerpost corner
connection (that is, do not delete every other fastener in this
region). The decision on whether or not to delete fasteners in
other regions should be based in part on additional birdstrike
analyses with impact sites located near each region of interest,
since such impact conditions result in the highest birdstrike-
induced loads in the fasteners of interest.

Finally, based on a review of B-1B and B-1A fastener
system drawings, it appears that the existing B-1B fastener-to-
bushing tolerance is adequate to facilitate windshield changeout.
Based on B-1A birdstrike test results for windshields having
bushings with the as-specified fastener-to-bushing tolerance and
windshields having bushings with an oversize tolerance, the
existing B-1B tolerance should not change the structural behavior
of the windshield system. All results reported herein should
therefore be representative of the full-scale B-1B windshield
system performance.
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SECTION 5
CONCLUSIONS AND RECOMMENDATIONS

As a result of the MAGNA analyses, the following
conclusions concerning the structural performance of the current
production and alternate configuration B-1B windshield systems

were reached:

1. The current production and the split polycarbonate
structural ply windshield configurations resisted internal cabin
pressures of up to 21.2 psig (ultimate pressure) without
permanent deformation to the windshield panel or the immediate
support structure. Similar performance is to be expected for all
of the other trade study configurations.

2. The current production windshield configuration was
capable of resisting impact by a 4-pound bird at the near-center
location at 650 mi/hr without fracture of the windshield panel or
immediate support structure. Similar performance is to be

expected for the trade study configurations.

3. All windshield configurations were marginally capable
of resisting impact by a 4-pound bird at the upper corner
location at 650 mi/hr. All windshield system components passed
without fracture except for the eyebrow frame, which exhibited a
marginal pass/fail condition (see Conclusion 6).

4. The upper corner impact location was more critical
than the near-center location, resulting in higher stresses and
yielding in the windshield structural ply (plies) and the
supporting framework.

5. All of the various windshield configurations
demonstrated similar resistance to upper corner birdstrike,
although the use of low strain rate interlayer material
properties led to the split polycarbonate ply configuration
exhibiting somewhat more windshield deflection and polycarbonate
yielding, and exhibiting yielding in the centerpost.
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6. The stresses and strains present in the MAGNA B-1B
model indicated that a marginal pass/fail (fracture) condition in
the eyebrow resulted from upper corner birdstrike. The high
stress region in the eyebrow frame (the web between the bottom
two flanges near the connection to the centerpost) due to upper
corner birdstrike was the same region that fractured in upper
corner birdstrike testing of the B-1A windshield system.
Apparently the redesign of the crew enclosure from B-1A to B-1B
did not eliminate potentially critical stresses (strains) in this
region. No definite conclusion can be drawn whether or not the
B-1B eyebrow frame will pass upper corner birdstrike by a 4-pound
bird at 650 mi/hr. The results indicate that fracture in the
eyebrow web is possible under such conditions.

7. The total strain present in the structural
polycarbonate ply (plies) due to upper corner birdstrike was well
below the elongation to failure for polycarbonate. Fracture of
these plies during upper corner bird impact should therefore not
occur unless the polycarbonate elongation is degraded (due to,
for instance, improper material processing, embrittlement, or
stress concentration).

8. The current production and trade study fasteners
resisted internal cabin pressures up to 21.2 psig without
failure.

9. Analysis of the current production windshield
revealed that the upper corner impact produced fastener safety
margins which were 50% less than those resulting from the near-
center impact.

10. All fasteners in the current production and trade
study windshield configurations withstood near-center and upper
corner impact by a 4-pound bird at 650 mi/hr without failure.
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11. With every other fastener deleted, the remaining
fasteners were sufficiently strong to resist failure when the
current production windshield was subjected to impact by a 4-
pound bird at the near-center location. Similar fastener
performance is to be expected for the trade study
configurations.

12. When every other fastener was removed from the
current production and trade study windshield configurations, the
resulting safety margins for upper corner impact were reduced to
approximately zero, implying that fastener failure was probable.

13. The critical fastener tolerance for windshield
changeout was identified to be the fastener-to-frame tolerance.
This tolerance (0.010 - 0.015 inch) was larger than the B-1A
tolerance (0.007 inch) and was judged to be adequate to
facilitate windshield changeout. The existing B-1B tolerance
does not change the results reported herein, that is, the
structural performance is not degraded or improved by this

tolerance.

Based on the above conclusions, the following are
recommended:

1. To prevent upper corner fastener failure, it is
recommended that all fasteners be retained within 10 inches of
either side of the eyebrow-to-centerpost corner connection (that
is, do not delete every other fastener in this region).

2. The decision on whether or not to delete fasteners in
other regions should be based in part on additional birdstrike
analyses with impact sites located near the regions of interest,
since such impact conditions result in the highest birdstrike-
induced loads in the fasteners of interest.
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